NIH researchers unlock pattern of gene activity for ADHD

Nov. 22, 2022
New study uses postmortem brain tissues to understand genomic differences in individuals with attention deficit hyperactivity disorder.

Researchers at the National Institutes of Health have successfully identified differences in gene activity in the brains of people with attention deficit hyperactivity disorder (ADHD). The study, led by scientists at the National Human Genome Research Institute (NHGRI), part of NIH, found that individuals diagnosed with ADHD had differences in genes that code for known chemicals that brain cells use to communicate. The results of the findings, published in Molecular Psychiatry, show how genomic differences might contribute to symptoms.

The researchers used a genomic technique called RNA sequencing to probe how specific genes are turned on or off, also known as gene expression. They studied two connected brain regions associated with ADHD: the caudate and the frontal cortex. These regions are known to be critical in controlling a person’s attention. Previous research found differences in the structure and activity of these brain regions in individuals with ADHD.

The researchers found that these differences affected the expression of genes that code for neurotransmitters, which are chemicals that brain cells use to communicate with one another. In particular, the results revealed differences in gene expression for glutamate neurotransmitters, which are important for brain functions such as attention and learning.

NIH release

ID 141973761 © Vetre Antanaviciute-meskauskiene | Dreamstime.com
dreamstime_xxl_141973761
Courtesy of Roche Diagnostics
product_ins_6728_im_en
ID 211428312 © Andrei Ivanov | Dreamstime.com
dreamstime_xxl_211428312