Experimental blood test improves early detection of pancreatic cancer
An experimental blood test detects early-stage pancreatic cancer more effectively than other available tests, reports a new study published in Cancer Letters.
“Catching pancreatic cancer early dramatically improves survival, but our current tools for doing so are limited,” said the study’s co-corresponding author Brian Haab, Ph.D., a professor at Van Andel Institute. “Our results reveal that our combination test improves accurate detection of pancreatic cancer in a lab setting by 27%. The next step is to evaluate the test’s effectiveness in a clinical lab rather than academic lab.”
The new test works by detecting two sugars — CA199.STRA and CA19-9 — that are produced by pancreatic cancer cells and escape into the bloodstream. CA19-9 is the current gold-standard biomarker for pancreatic cancer. Haab’s lab identified CA199.STRA as a cancer biomarker and developed the technology to detect it.
On its own, the CA19-9 test correctly identified only 44% of pancreatic cancer samples in the lab. When CA199.STRA was added, the new combination test correctly identified 71% of pancreatic cancer samples.
The combination test also greatly reduced the number of false negatives while maintaining a low false positive rate.
The analysis also revealed that combining CA199.STRA, CA19-9 and a protein biomarker called LRG1 improved specificity, which refers to a test’s ability to return a negative result in samples without cancer. The three-panel test accurately identified nearly all cases correctly and had far fewer false positives than CA19-9 alone.